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Abstract

An inverse radiation analysis is presented for estimating radiative parameters from the temperature measurement
in three-dimensional participating media, where radiation and conduction occur simultaneously. The SN method is

employed to solve the radiative transfer equation. The inverse radiation problem is solved through the minimization
of a performance function, which is expressed by the sum of square residuals between calculated and observed
temperature, utilizing the conjugate gradient method. The present technique is robust and yields accurate estimation

of radiative parameters even with noisy measurement of temperature. # 2000 Elsevier Science Ltd. All rights
reserved.

1. Introduction

One of the most important mechanisms of heat
transfer in high temperature equipments is radiation.

Since the radiation e�ects the temperature ®eld, the
actual mode of heat transfer in most cases is combined

radiation and conduction or convection. In the present

investigation, we consider heat transfer by combined
conduction with radiation through participating media

capable of absorbing, emitting and scattering thermal
radiation. In this case, the energy conservation

equation provides the local temperature which deter-
mines the blackbody intensity in the radiative transfer

equation. On the other hand, the divergence of the

radiative ¯ux that is present as a source term in the
energy conservation equation is obtained only after

solving the radiative transfer equation. Thus, the
problems are always implicit in temperature, and there-

fore, require iterative procedure which makes the mod-

eling of these processes challenging. Another di�culty

encountered in the modeling of these processes is the

estimation of radiative properties of the medium.

Although several reliable numerical methods are avail-

able for the solution of the radiative transfer equation,

accurate prediction of the radiation ®eld is not possible

without employing accurate values of these radiative

parameters. Inverse radiation analysis is concerned

with the determination of the radiative properties from

various types of measurements [1±3]. In the present

work, we develop a method of solving three-dimen-

sional inverse radiation problems which allows one to

estimate the radiative parameters from the measure-

ment of temperature. On the one hand, the strong

coupling of the radiation and the temperature ®elds

makes the analysis complicated, but on the other hand

it allows the estimation of radiative parameters from

the relatively easier measurement of temperature. The

radiative transfer equation is solved by using the SN

method with N � 4 in the present investigation.
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2. The system and governing equations

The system under consideration is depicted in Fig.

1(a), which is a rectangular enclosure containing parti-
cipating media with opaque and di�usively re¯ecting
boundaries. Heat transfer in this system is contributed
by conduction as well as radiation with absorption,

scattering and emission. The steady temperature ®eld
in this enclosure is governed by the following
equation.

kr2Tÿ r � qr � 0 �1�

where k (=44 W/m K) is the thermal conductivity, T
is the temperature and qr is the radiative heat ¯ux. The
boundary conditions for Eq. (1) are given as:

x � 0, T � 900

x � D, T � 900

y � 0, T � 900

y � L, T � 900

z � 0, T � 1200

z � H, T � 400 �2�

where D = 2 m, L = 2 m, and H = 4 m. The diver-
gence of radiative heat ¯ux r � qr in Eq. (1) is deter-

mined by the following equation.

r � qr � 4pk

�
Ib ÿ G

4p

�
�3�

where k is the absorption coe�cient, Ib is the Planck
function (blackbody intensity) and G is the incident
radiation, which are given by the following equations.

G �
�
4p
I�r, Ãs� dO �4a�

Ib � sb

p
T 4 �4b�

Here, sb is the Stefan±Boltzmann constant, and I�r, Ãs�
is the radiation intensity which is governed by the fol-
lowing radiative transfer equation for participating

media with absorption, emission and scattering:

r � �ÃsI� � �k� s�I

� kIb � s
4p

�
4p
I
ÿ
r, Ãs 0

�
F�Ãs � Ãs 0 � dO �5�

where F is the scattering phase function, Ãs is a unit
vector in the direction of the radiation, O is the solid

angle and s is the scattering coe�cient. The relevant
boundary conditions for Eq. (5) at the boundary walls
are as follows:

Nomenclature

ai linear anisotropic coe�cient (Eq. (8))
d conjugate direction vector
D width of the system (m)

G incident radiation
H height of the system (m)
I radiation intensity

Ib blackbody intensity
J performance function (Eq. (15))
k thermal conductivity (W/m K)

MO number of measurement points
Ãn unit inward normal vector
P parameter vector �k, s)
qr radiative heat ¯ux
Ãs unit vector into a given direction
T temperature ®eld
T $ observed temperature ®eld

Wm angular quadrature weight associated with
the mth direction

Greek symbols
E emissivity
Zm direction cosine

k absorption coe�cient
mm direction cosine
xm direction cosine

r optimal step length in the conjugate gradient
method

s scattering coe�cient

sb Stefan±Boltzmann constant, sb � 5:670�
10ÿ8 W/m2 K4

se error adjusting parameter (Eq. (30))
Fm 0m scattering phase function

c parameter de®ned by Eq. (24)
o random number
O solid angle
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I�rw, Ãs� � E�rw �Ib�rw � � 1ÿ E�rw �
p

�
Ãn�Ãs 0<0

I
ÿ
rw, Ãs 0

�
j Ãn

� Ãs 0j dO 0

� Ãn � Ãs > 0�

�6�

where Ãn is the inward normal vector, Ãs 0 is the unit vec-
tor in the incoming beam direction and E�rw� is the

wall emissivity.
When the SN method with N � 4 (S4 method) is

applied to Eq. (5), it is discretized as follows [4]:

mm
@I m

@x
� xm

@I m

@y
� Zm

@I m

@z

� ÿ�k� s�I m � kIb � s
4p

XNm 0

m 0�1
Wm 0Fm 0mI

m 0 �7�

where Im �� I�x, y, z; mm, xm, Zm�� is the total radiation
intensity at the position (x, y, z ) in the discrete direc-

tion given by the direction cosine �mm, xm, Zm), Wm 0 is
the angular quadrature weight associated with the m 'th
direction, and Fm 0m is the discretized phase function

for scattering between m ' and m discrete directions. In

the present investigation linear anisotropic scattering is
assumed

Fm 0m � 1:0� a1
ÿ
mmmm 0 � xmxm 0 � ZmZm 0

� �8�

The value a1 is the asymmetric factor that lies between
ÿ1Ra1R1, where the values ÿ1, 0 and 1 denote back-

ward, isotropic and forward scattering, respectively.
The boundary conditions given by Eq. (6), representing
the di�usively emitting and re¯ecting walls, are discre-

tized by means of the S4 method as follows:

x � 0, I m � EIb � 1ÿ E
p

X
mm 0<0

Wm 0 jmm 0 jI m 0

ÿ
mm > 0

� �9�

x � D, I m � EIb � 1ÿ E
p

X
mm 0>0

Wm 0 jmm 0 jI m 0

ÿ
mm < 0

� �10�

Fig. 1. (a) The system; (b) the location of 17 measurement points; and (c) the location of nine measurement points.
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y � 0, I m � EIb � 1ÿ E
p

X
xm 0<0

Wm 0 jxm 0 jI m 0

�xm > 0�
�11�

y � L, I m � EIb � 1ÿ E
p

X
xm 0>0

Wm 0 jxm 0 jI m 0

�xm < 0�
�12�

z � 0, I m � EIb � 1ÿ E
p

X
Zm 0<0

Wm 0 jZm 0 jI m 0

ÿ
Zm > 0

� �13�

z � H, I m � EIb � 1ÿ E
p

X
Zm 0>0

Wm 0 jZm 0 jI m 0

ÿ
Zm < 0

� �14�

Here, I m is the intensity of radiation leaving the wall,

E is the surface emissivity and Ib is the total blackbody
radiation intensity at the temperature of the wall. Eqs.
(1) and (5) are coupled through the terms r � qr and Ib,

and must be solved iteratively to yield the radiation
and the temperature ®elds. The computational pro-
cedure is as follows:

1. Assume the temperature ®eld.
2. Calculate Ib using the given temperature ®eld.
3. Solve the radiative transfer Eq. (5) to obtain the

radiation intensity I.
4. The divergence of the radiative heat ¯ux is deter-

mined by Eq. (3).
5. Solve Eq. (1) to obtain the temperature ®eld.

6. If the radiation and the temperature ®elds are not
converged, go to the Step 2.

3. The inverse radiation problem

The temperature ®eld inside the domain, which can
be easily measured at various locations, is in¯uenced
by the radiation ®eld through the term r � qr (cf. Eqs.

(1), (3), (4a) and (4b)). Conversely, the radiation inten-
sity is a�ected by the temperature ®eld through Ib (cf.
Eq. (5)) and by the radiative parameters such as

absorption coe�cient, scattering coe�cient and the lin-
ear anisotropic coe�cient. Therefore, the radiative par-
ameters can be estimated by using the measured values

of the temperature ®eld at certain locations. The per-
formance function for the identi®cation of the radi-
ative parameters is expressed by the sum of square

residuals between the calculated and the observed tem-
perature as follows:

J � 1

2

XMO

m�1

h
T�xm, ym, zm; P� ÿ T y�xm, ym, zm �

i2
�15�

where T�xm, ym, zm; P� is the calculated temperature at
the location �xm, ym, zm� with the radiative parameters

P � �k, s�T, T y�xm, ym, zm� is the observed tempera-

ture at the same location, and MO is the total number
of measurement points. The problem of inverse radi-
ation now becomes the minimization of the perform-

ance function, Eq. (15), over the parameter vector P.
The minimization procedure is performed using a con-
jugate gradient method suggested by Fletcher and
Reeves [5]. The variation of the performance function

with respect to the parameter vector P is determined
by the following gradient vector.�
@J

@P

�T

�
�
@J

@P1
,
@J

@P2
, . . . ,

@J

@PN

�
�16�

where

@J

@P
�
XMO

m�1

h
T�xm, ym, zm; P�

ÿ T y�xm, ym, zm �
i
@T�xm, ym, zm; P�

@P
�17�

and N is the number of radiative parameters to be esti-
mated. The governing equations for the sensitivity
functions �@T=@P�T � �@T=@P1, @T=@P2, . . . ,@T=@PN�,
which represent the variation of the temperature ®eld
with respect to the vector P, are obtained by partially
di�erentiating Eqs. (1) and (7) with respect to the par-
ameter vector. Di�erentiating Eq. (1) with respect to

P, we ®nd

kr2

�
@T

@P

�
ÿ @

@P
�r � qr � � 0 �18�

with the following condition at all boundaries

@T

@P
� 0 �19�

For the determination of the second term in Eq. (18),

we need the governing equation for �@ I m=@P�:

mm
@

@x

�
@I m

@P

�
� xm

@

@y

�
@I m

@P

�
� Zm

@

@z

�
@ I m

@P

�

� ÿ
�
@

@P
�k� s�

�
I m ÿ �k� s�

�
@ I m

@P

�
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�
�
@

@P
k

�
Ib � k

@Ib

@P
� 1

4p

�
@s
@P

�XNm 0

m 0�1
W 0

mFm 0mI
m 0

� s
4p

XNm 0

m 0�1
W 0

mFm 0m

�
@I m 0

@P

�
�20�

The relevant boundary conditions for Eq. (20) are also

obtained by partially di�erentiating Eqs. (9)±(14) with
respect to P. For example,

x � 0,

@I m

@P
� E

�
@Ib

@P

�
� 1ÿ E

p

X
mm 0<0

Wm 0 jmm 0 j
�
@ I m 0

@P

�
ÿ
mm > 0

�
�21�

Boundary conditions at other walls can be obtained in
a similar way. Since Ib � sbT

4=p, we ®nd

@ Ib

@P
� 4sbT

3

p

�
@T

@P

�
�22a�

The second term in Eq. (18) is evaluated as:

@

@P
�r � qr � � 4p

�
@k
@P

��
Ib ÿ G

4p

�
� 4pk

�
@Ib

@P

ÿ 1

4p

�
O

@I

@P
dO
�

�22b�

Therefore, Eqs. (18) and (20) are coupled and must be

solved iteratively in a similar manner to the case of
Eqs. (1) and (5) as explained in Section 2. The set of
equations in Eq. (20) is solved by using the S4 method.

The conjugate direction or the search direction d is
calculated and renewed by the Fletcher±Reeves
method:

d�i�1� � ÿ
�
@J

@P

��i�1�
�cd�i� �ir0� �23�

where

c �

XN
n�1

"�
@J

@Pn

��i�1�#2

XN
n�1

"�
@J

@Pn

��i�#2
�24�

On the other hand, the search direction at the ®rst step
is computed by:

d�0� � ÿ @J
@P

�25�

This renewed d�i�1� is used for the search direction at

the next iteration state. The parameter vector P�i�1� at
the �i� 1)th iterative state is obtained from P�i � by

moving in the conjugate direction d�i �:

P�i�1� � P�i� � rd�i� �26�
The optimal step length r is determined by minimizing

J�P� rd � with respect to r: Exploiting the following
formula

T�P� rd� � T�P� �
�
@T

@P

�T

�rd �27�

we ®nd, after some algebraic manipulation, the ex-

pression for the optimal step length.

XMO

m�1

��
T�xm, ym, zm� ÿ T y�xm, ym, zm �

�

r � ÿ

XN
n�1

�
@T�xm, ym, zm �

@Pn
dn

��
XMO

m�1

 XN
n�1

@T�xm, ym, zm �
@Pn

dn

!2
�28�

where dn is the nth component of the conjugate direc-
tion vector d, i.e.,

dT � �d1, d2, . . . , dN � �29�
The procedure for the conjugate gradient method is

summarized as follows:

1. Assume the parameter vector P� �P1, P2, . . ., PN�T:
Solve Eqs. (1) and (5) iteratively to obtain T and I.

Similarly, solve Eqs. (18) and (20) iteratively to
obtain @T=@P and @I=@P:

2. Calculate d�0� � ÿ�@J=@P� by using Eq. (17).

3. Determine the optimal step length by using Eq.
(28).

4. Calculate P�i�1� by using Eq. (26).
5. Obtain T and I by solving Eqs. (1) and (5) iter-

atively. Similarly solve Eqs. (18) and (20) iteratively
to obtain @T=@P and @ I=@P:

6. Calculate c by using Eq. (24).

7. Calculate d�i�1� by using Eq. (23). If jd�i�1�j is less
than a prescribed small number, stop the procedure.

8. Set i � i� 1 and go to the Step 3.

4. Results

Before estimating parameters of a system, we need

experimental measurements from the system. We
solved the governing equation of the system with (11�
11 � 17) grid numbers to obtain numerical solutions.
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We then use these numerical solutions as experimental
measurements after adding small random noise. It is

expected that the accuracy of the estimation of par-
ameters improves as the number of measurement
points increases, but we have to be satis®ed with a

®nite number of measurement points in a typical ex-
periment. As the default measurement points, we select
17 points which are distributed axially as shown in

Fig. 1(b). All results presented in this section are
obtained by using these default measurement points, if
not speci®ed otherwise.

When experimental measurements are obtained, they
are subject to measurement errors due to inaccuracy of
the instruments and to external random disturbances.
If the numerical solution of the governing equation is

adopted as experimental measurements, the e�ect of
noise is taken into account arti®cially as in the follow-
ing equation.

Tmeasured

ÿ
� T y

�
� Texact � ose �30�

where se determines the noise level, which takes values
of 0.0, 3.0, 4.0, 5.0 and o is a random number between

ÿ2:576RoR2:576: In fact, se is the standard deviation
of measurement errors which is assumed to be the

same for all measurements, and o is the Gaussian dis-
tributed random error. The above range of o value
corresponds to 99% con®dence bound for the tempera-

ture measurement.
As a ®rst demonstration of the present technique of

parameter estimation, the absorption coe�cient k and

the scattering coe�cient s are estimated, respectively,
using the simulated experimental data. The exact value
of k is 0.5 and that of s is also 0.5, if not speci®ed

otherwise. Fig. 2(a) shows the convergence of the iter-
ation procedure of conjugate gradient method when k
is estimated with a known value of s (=0.5), assuming
that there is no measurement error. For various initial

approximations of k, accurate predictions of k are
obtained after ®ve iterations. Similarly, Fig. 2(b) plots
the convergence rate of the estimation of s when a

known value of k (=0.5) is employed. The scattering
coe�cient s is also predicted accurately after ®ve iter-
ations for various initial approximations of s:
As explained in the previous section, one of the most

important ingredients of the conjugate gradient method

Fig. 2. Convergence of the iteration procedure of the conjugate gradient method. (a) Absorption coe�cient and (b) scattering coef-

®cient.
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is the evaluation of @J=@P, which indicates the variation
of the performance index J with respect to the parameter

P. This gradient vector is determined by the sensitivity
functions �@T=@P�, which represent the variation of the
temperature ®eld with respect to the parameter vector P

(cf. Eq. (17)). Fig. 3(a)±(d) show the ®eld @T=@k at y �
1 m at various iteration numbers when the initial ap-
proximation of k � 0:2: As the iteration progresses, the

estimated value of the parameter k approaches the exact
one and the magnitude of @T=@k decreases. Similar
®gures for the ®eld @T=@s are displayed in Fig. 3(e)±(h)

when the initial approximation of s � 0:2: The variation
of the magnitude of @T=@s with respect to the iteration
number shows the same tendency. Fig. 3(a)±(h) reveal
that the magnitude of @T=@k is much larger than that of

@T=@s at the same deviation of the estimated parameter
values from the exact ones. Because the sensitivity of the
temperature ®eld to k is much larger than that to s, the

simultaneous estimation of k and s does not work unless
the initial approximation of these parameters are near

the exact values. To overcome this di�culty, we employ
the following two-stage estimation. At the ®rst stage, we
assume the value of the lesser sensitive parameter, s,
and perform the estimation procedure to obtain the con-
verged value of the more sensitive parameter k: Since
the temperature ®eld is not very sensitive to the scatter-

ing coe�cient s, we can still obtain converged esti-
mation of k which is not far from the exact value.
Comparing Fig. 3(c), (d) and (e)±(h), we ®nd that the

magnitude of @T=@k ®eld decreases approximately to
that of @T=@s when the estimated value of k is near the
exact one. Next, using the assumed value of s and the
converged estimation of k from the ®rst stage, we per-

form the simultaneous estimation of k and s, which con-
stitutes the second stage of the procedure. Fig. 4(a)±(d)
show the results based on this two stage procedure when

Fig. 3. Sensitivity ®elds at y � 1:0 m at various iteration numbers. (a)±(d) @T=@k and (e)±(h) @T=@s:
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there is no measurement error. Fig. 4(a) shows the result

of the ®rst stage when the initial approximation of s is

0.3. The ®rst stage yields k � 0:47588 as the converged

estimated value. When the second stage iteration is per-

formed using s � 0:3 and k � 0:47588 as initial approxi-

mations, it yields almost exact estimation for these

parameters as shown in Fig. 4(b). Fig. 4(c) and (d) are

similar results when the initial assumption of s is 0.8. It

is shown that this two-stage procedure yields very accu-

rate results regardless of the initial approximation of the

lesser sensitive parameter, s:
Fig. 5(a) and (b) show the e�ect of noise level se on

the accuracy of the estimation. These ®gures show that

the accuracy of the estimation deteriorates as the noise

level se increases. Finally, the e�ect of number of

measurement points on the accuracy of the estimation

is investigated. Fig. 6(a) and (b) show the estimated

values of k and s, respectively, for various noise level

se when the number of measurement points is reduced

to 9, as depicted in Fig. 1(c), instead of the default
value of 17. Comparing Figs. 5 and 6, it is found that

the reduction of number of measurement points does
not a�ect the accuracy of the estimation when the
noise level se is low. For larger value of the noise level

�se > 4), the estimation is still reasonable when the
number of measurement points is 17 (Fig. 5) but the
estimation becomes worse rapidly with the employment
of nine measurement points (Fig. 6).

5. Conclusion

The inverse radiation problem of estimating radi-
ative parameters from the temperature measurement
within the participating media is investigated by employ-

ing the conjugate gradient method. The strong coupling
of the radiation and the temperature ®elds allows the
estimation of radiative parameters from the relatively

Fig. 4. Two-stage procedure : (a) the ®rst stage when sinitial � 0:3; (b) the second stage when sinitial � 0:3; (c) the ®rst stage when

sinitial � 0:8; and (d) the second stage when sinitial � 0:8:
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easier measurement of temperature. The S4 method is

used to solve the radiative transfer equation and the

corresponding sensitivity equation. The present tech-

nique is robust and yields accurate estimation of radia-

tive parameters even with noisy measurement of

temperature.

Fig. 5. E�ect of noise level se on the accuracy of the estimation. (a) Absorption coe�cient and (b) scattering coe�cient.

Fig. 6. Accuracy of the estimation when using nine measurement points (cf. Fig. 1(c)). (a) Absorption coe�cient and (b) scattering

coe�cient.
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